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A B S T R A C T

We investigated a method to detect genuine smiles from observers’ physiological states. We recorded two
physiological measures from people observing videos of smiles: pupillary response (PR) and galvanic skin re-
sponse (GSR). Smile videos were from two benchmark databases (MAHNOB and AFEW). MAHNOB videos were
classified as showing genuine or real smiles and AFEW videos were classified as not showing real smiles, based
on their process of elicitation. A leave-one-observer-out procedure was employed to investigate classification
performance using k-nearest neighbor (KNN), support vector machine (SVM), simple neural network (NN), and
ensemble classifiers. Different noise removal techniques and a feature selection method — canonical correlation
analysis with neural network (NCCA) — were applied to find minimally correlated features for the classes. Using
these methods, the highest classification accuracy of 97.8% for PR and 96.6% for GSR signals were found via the
ensemble classifier. In comparison, the observers (n=20) correctly judged smiles as real only 58.9% of the time
(on average) to 68.4% (by voting), which is similar to the literature, showing our data is similar in quality.
Overall, our results demonstrate that user-independent analyses of physiological measures can substantially
outperform individual self-reports for detecting real smiles.

1. Introduction

It could be highly beneficial to discriminate genuine facial expres-
sions (spontaneous/felt/real) from other types (posed/acted) robustly
and reproducibly in many situations like social interaction, public se-
curity, and so on. As an example, a police officer or computerized tool
may make assumptions about a suspect's veracity or not according to
whether their facial expressions are genuine or acted. One of the most
frequently displayed facial expressions is a smile (Dibeklioglu et al.,
2015). Smiles are interpersonal ‘tools’ and nonverbal behaviours that
are sometimes more significant than spoken words (Birdwhistell, 1970)
and carry extra information to strengthen, supplement or contradict
what is being said. Shlenker (1980) indicated that smiling can help
people to increase likability. Gifford et al. (1985) show evidence that
people who smile more, and use more gestures, are identified as having
better social skills. Smiling with eye contact is also perceived to have a
positive influence on how people respond to a question (Parsons and
Liden, 1984). Thus, the smile is an extremely useful facial expression,
and accurately recognizing whether a smile is genuine or acted would
seem beneficial for successful social interaction. The smile is, however,
a complex, multi-purpose, dynamic expression that conveys not only
the meaning of happiness, but can also be identified as rapport,

sarcasm, frustration, empathy, surprise, polite disagreement, pain and
even more (Hoque et al., 2011). In this paper, we refer to smiles which
are elicited by stimuli to generate positive smiles involuntarily as real
or genuine smiles interchangeably. Voluntary smiles can include posed
and acted smiles as well as other kinds of smiles. It is important to
accurately detect genuine smiles to understand the affective state un-
derlying the meaning of this most real kind of smile.

Previous work examining whether genuine smiles can be dis-
criminated from fake smiles has focused on analysing the smile images/
videos directly. For example, Valstar et al. (2007) tested discrimination
of genuine from fake smiles by analysing 202 videos of smiling people.
The dynamic and morphological characteristics of the smiles of virtual
agents were studied in (Ochs et al., 2010). Ambadar et al. (2009) in-
cluded co-activation of Orbicularis oculi, smile controls, mouth
opening, amplitude, and asymmetry of amplitude as morphological
features and duration of smiles, onset and offset velocity, asymmetry of
velocity, and head movements as dynamic characteristics. Further, fa-
cial feature analysis has been evaluated using image data to measure
the timing of face motion during smiles in (Cohn and Schmidt, 2004),
this study showed that dynamic characteristics were more informative
than morphological characteristics. Ambadar et al. (2009) showed
specific physical characteristics of smiles (e.g., smile controls, mouth

https://doi.org/10.1016/j.ijhcs.2018.10.003
Received 22 November 2017; Received in revised form 22 October 2018; Accepted 23 October 2018

⁎ Corresponding author.
E-mail address: zakir.hossain@anu.edu.au (M.Z. Hossain).

International Journal of Human-Computer Studies 122 (2019) 232–241

Available online 24 October 2018
1071-5819/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/10715819
https://www.elsevier.com/locate/ijhcs
https://doi.org/10.1016/j.ijhcs.2018.10.003
https://doi.org/10.1016/j.ijhcs.2018.10.003
mailto:zakir.hossain@anu.edu.au
https://doi.org/10.1016/j.ijhcs.2018.10.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2018.10.003&domain=pdf


opening, amplitude, asymmetry of amplitude, asymmetry of velocity,
duration, head movements etc.) influenced what those smiles were
perceived to mean. The morphological and dynamic features of smiles
in the case of face-to-face interaction were also studied in (Hoque et al.,
2011). The facial and prosodic features of displayers’ video clips were
analysed in (Hoque and Picard, 2011), with the purpose of recognizing
smiles from both acted and naturally elicited data. A two-layer deep
Boltzmann machine was applied to smiling image data in (Gan et al.,
2015). An informative feature set was extracted from smiling faces and
an automatic technique was implemented for analysing smiling videos
to discriminate genuine from posed smiles in (Dibeklioglu et al., 2015),
with 92.90% accuracy. Although all of the above studies were found to
reliably discriminate real from fake smiles, they focused on analysing
the video/image data directly and did not measure physiological signals
from observers watching the smiling video stimuli, and also they did
not examine human physiological reactions and self-judgements in a
single experiment.

As mentioned above, smiles generally reflect positive affect
(Ekman et al., 1990), but can arise from a variety of emotions
(Ekman and Friesen, 1982). Affect detection from a displayer's phy-
siological measures is an ongoing research topic (Zhou et al., 2011; Liu
et al., 2008). In general, recognition from video is easier for users than
recognition from static images (Picard, 2000). Observers may experi-
ence certain feelings (Kim and Andre, 2008; Soleymani et al., 2009)
from watching video clips or listening to music that are related to their
physiological state. Observers’ physiological changes are also associated
with emotional states (Kim and Andre, 2008) and less susceptible to
social masking (Kim, 2007). The physiological reactions in the body
and brain change in response to different stimuli and are recognised as
self-judgements (Damasio, 1994). On the other hand, affective self-re-
ports might be held in doubt because errors in self-judgements are not
negligible – observers might misrepresent or cannot always remember
different smiles during an experiment or might want to please the ex-
perimenter (Soleymani et al., 2012b). The approach of using observers’
physiological signals to decode affective responses (Soleymani et al.,
2009) to smiles is an alternative way of accessing the displayers’ in-
ternal state. In this regard, two physiological signals — pupillary re-
sponse (PR) and galvanic skin response (GSR) — were analysed in an
attempt to detect genuine smiles.

The pupillary response is the measure of pupil diameter over time.
Among other things, pupil diameter is influenced by light, cognition,
attention, and emotion (Bradley et al., 2008; Partala and Surakka,
2003). The pupillary reflex has been found to vary significantly during
the identification of smiles or emotions after removing luminance ef-
fects (Soleymani et al., 2012b). Principal Component Analysis (PCA)
can be used to reliably separate the effect of changes in luminance from
other effects (Oliveira et al., 2009). However, pupillary responses also
change with different emotional states (Bradley et al., 2008; Partala and
Surakka, 2003). GSR is another important physiological signal that has
been found to be sensitive to emotional changes (Kim and Andre, 2008;
Healey and Picard, 1998). Recent research has indicated that reactions
to happiness and sadness can be distinguished from GSR
(Levenson et al., 1990). We recorded and analysed both of these signal
from observers while they watched brief video stimuli showing the key
emotional expression.

We collected video clips from benchmark datasets to use as stimuli
(Fig. 1) for the observers. We use the expression “displayer” to indicate
the person in the video performing an emotion, such as a genuine smile,
whereas the “observer” is the person watching the video. Firstly,
nineteen video clips were collected from two benchmark datasets
((Dhall et al., 2014; Soleymani et al., 2012), and (Petridisa et al., 2013))
and processed using MATLAB R2015a to convert them to grey scale,
with each clip lasting 10 s. The use of greyscale and 10 s was to elim-
inate differences between data sources (see Stimuli Collection section).
Secondly, physiological signals were recorded from twenty observers,
while watching the video stimuli, along with their judgments as to

whether the smiles were genuine, collected via a Likert scale. Thirdly,
the data from the observers of the nineteen stimuli we collected were
analysed. The analysis consisted of several stages: signal normalisation,
de-noising, smoothing, feature selection and classification. For classi-
fication, K-nearest neighbor (KNN), support vector machine (SVM),
neural network (NN), and ensemble classifiers were utilised to dis-
criminate between genuine and acted smiles by analysing the physio-
logical signals separately. Canonical correlation analysis with neural
network (NCCA) was applied to select minimally correlated features.
Finally, the results showed that classification accuracies were much
higher than chance and significantly higher than the same observers’
own judgements.

2. Methodology

2.1. Stimuli collection

The original video stimuli were randomly selected from two data-
bases: AFEW (Acted Facial Expressions in the Wild) (Dhall et al., 2014)
and MAHNOB (Multimodal Analysis of Human Nonverbal Behaviour in
Real-World Settings) (Soleymani et al., 2012a; Petridisa et al., 2013).
The AFEW database contains data from professional actors displaying
various emotions. In the case of smiles, they were asked to perform or
instructed to display a smile and thus we could classify these as acted
smiles, and here we include these as not being genuine smiles. We chose
10 stimuli from the larger AFEW database at random. For comparison, 9
real smiles’ stimuli were collected from MAHNOB database (5 from the
HCI-tagging database (Soleymani et al., 2012a) and 4 from the Laughter
database (Petridisa et al., 2013)) where participants’ smiles were eli-
cited by watching a sequence of funny or otherwise pleasant video clips
and thus classified as real/genuine smiles. Again, this was a random
subset of the smiles available. The characteristics and file names of the
smiling video samples are listed in Table 1.

The collected video samples were not in the same format, colour or
duration, so we made them as similar as possible. The MATLAB R2015a
platform was employed to convert them to mp4 format, grey scale and
duration of 10 s each. Firstly, the emotion expression portion of each
sample was cropped and the frames were extracted. Secondly, every
frame of each sample was converted into grey scale and only the face
portions were retained. Finally, the processed frames of each sample
were converted back into video samples and used as stimuli to record
physiological signals and self-report from the observers. In this case,
either frame rates were decreased or processed frames were used in a
repetitive manner to make each stimulus up to 10 s long. This means
that the observers saw the shorter facial expressions for longer, so the
time for viewing overall was the same for all videos. We also checked
the luminance variation over all frames of each stimulus using MATLAB
SHINE toolbox (Willenbockel et al., 2010), the results are shown in
Fig. 2. It can be seen from Fig. 2 that luminance does not vary much
among the frames of each particular stimulus and the average lumi-
nance is in a range of 60 to 85 ALU (arbitrary linear unit).

2.2. Experimental setup

In order to detect genuine smiles, a structured experiment was im-
plemented to record and evaluate the observers’ judgements and phy-
siological signals. The selected 19 stimuli were presented to observers
after a short introduction page. At the end of each stimulus, each ob-
server was required to select an option based on a 5 point Likert scale
(−2 to+2) with an additional option of ‘No Smile’ as shown in Fig. 3,
to indicate whether they judged the facial expression to be a smile, and
the degree to which it was showing a real smile expression or not. The
total duration of the experiment was around 10 minutes.

In this study, the observers’ GSR signals were recorded using Neulog
(https://neulog.com/) sensors at a sampling rate of 10 Hz from the
index and middle finger of the left hand. Eye activities (pupil dilation)
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were recorded using a Facelab (Seeing Machines) remote eye-tracker
system with a sampling rate of 60 Hz. The recording system is shown in
Fig. 4.

2.3. Data acquisition

Twenty (9 female, 11 male) students, with mean age of 26.9 ± 6.3,
voluntarily participated as observers of the videos in this experiment,
from the Australian National University. Each observer had normal or
corrected to normal vision. We recruited voluntary participants, as they
provide highly reliable outcomes compared to paid participants, when
they complete experiment tasks (Redi and Povoa, 2014). Our partici-
pants voluntarily took part in our experiment, and they all finished the
task. All the methods related to the experiment were approved by our
University's Human Research Ethics Committee prior to data acquisi-
tion.

Upon arrival at the laboratory, each observer signed the consent
form and was seated on a static chair, facing a 17 inch LCD monitor in a
sound-attenuated, dimly lit, closed room. Sensors were attached to
measure their GSR signals. Observers were given a brief introduction to
the experimental procedure. Their chairs were moved forward or
backwards to adjust the distance between the chair and eye tracker.
Nine point calibration was performed, where a spot was displayed on
the monitor and observers asked to track it, for calibrating the eye
tracker and starting the experiment. Observers were instructed to limit
their body movements in order to reduce undesired artefacts in the
signals. During the experiment, all observers used their right hand for
moving the mouse or typing. The stimuli were presented to the ob-
servers in an order-balanced way. After completing the experiment, the
sensors were removed and the observers were thanked for their parti-
cipation.

Fig. 1. Basic block diagram of the experiment.

Table 1
Collected video samples shown as stimuli.

Sl. Source File Name Category Notation

1 MAHNOB_HCI
(Soleymani et al.,
2012a)

P2-Rec1-2009.avi Genuine / Real /
Felt /
Spontaneous
smiles

R1

2 P4-Rec1-2009.avi R2
3 P8-Rec1-2009.avi R3
4 P14-Rec1-2009.avi R4
5 P24-Rec1-2009.avi R5
6 MAHNOB_Laughter

(Petridisa et al., 2013)
S001-001.mp4 R6

7 S008-002.mp4 R7
8 S009-001.mp4 R8
9 S011-001.mp4 R9
10 AFEW (Dhall et al.,

2014)
000,329,320.avi Do not belong to

the above
category

A1

11 000,404,000.avi A2
12 002,809,954.avi A3
13 011,309,840.avi A4
14 013,818,854.avi A5
15 000,758,680.avi A6
16 004,025,454.avi A7
17 005,513,240.avi A8
18 001,912,000.avi A9
19 003,652,360.avi A10

Fig. 2. Average (± std.) luminance (in arbitrary linear units (ALU)) over all frames of each stimulus.
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2.4. Data processing

The recorded physiological signals were extracted and three data
sets were created: left eye pupil diameter (LEPD), right eye pupil dia-
meter (REPD), and GSR. All the extracted features were numerical. It
was necessary to standardize the features to reduce the between-ob-
server differences (Hossain et al., 2016a). Maximum value normal-
ization was applied to each data set separately. In this normalization,
the maximum value from a given signal of each observer was computed
over all videos watched and all features of that particular signal were
divided by their computed maximum value. Thus, all data for each
observer varied between 0 and 1 for each video. Data for each stimulus
were then separated and the final data sets were constructed. Thus,
every data set had 19 patterns (consisting of physiological signal sensor
measurements) corresponding to the 19 stimuli (that is, for the emotion
videos) with a number of features (here we treated each time point of a
signal as a feature) over 10 s duration for each pattern.

In the case of pupil data, the Seeing Machines eye tracker provides
the position of the projected eye gaze on the monitor, the pupil dia-
meter and the moments when the eyes are closed or blinking. The
missing data segments due to eye blinks were measured as zero by the
eye tracking machine, and cubic spline interpolation was applied to
reconstruct the pupil size during the blinking time (Mathôt, 2013).
Then, the interpolated signal was smoothed using 10-point Hann
moving window average, to filter out noise and unrelated features
(Zheng et al., 2014). According to Pamplona et al. (2009), pupil

diameter varies due to effects caused by lighting, and the pupillary light
reflex magnitude changes between different people. The magnitudes of
pupil diameter time series were normalized according to the maximum
value normalization technique. Principal component analysis (PCA)
had been shown to be effective in separating the effect of changes in
luminance from stimulus relevance (Oliveira et al., 2009). This was
performed here by subtracting the first principal component from the
normalized and smoothed pupil diameter data (Soleymani et al.,
2012b). The pupil signal processing steps are shown in Fig. 5.

Trends of LEPD and REPD were observed after removing noise.
Similar types of trends were found when comparing the left eye
(Fig. 6(a)) and right eye pupil diameters (Fig. 6(b)). In the case of GSR
signals, twenty point median filter was applied on normalized GSR
signals to smooth and remove the effect of noise from the raw signals as
suggested by Guo et al. (2013). The trends of GSR signals are depicted
in Fig. 6(c).

Fig. 6 illustrates the time point average of physiological signals over
observers when viewing all video stimuli. In the case of pupil dilation, it
can be seen that the pupil constricted from stimulus onset and reached a
minimum, and then a sharp dilation started and continued until
reaching a maximum point. Then, either a smooth dilation or con-
striction started and continued, which is sustained in a consistent range,
until the very end of our analysis window. It is stated in the literature
that brain signals (such as EEG signals) spend 0.2–0.5 s to detect
emotional stimuli (Lithari et al., 2010; Bilalpur et al., 2017) where
peripheral physiological signals take 2–3 s (Partala and Surakka, 2003;

Fig. 3. Five point Likert scale to accumulate participated observer's self-report.

Fig. 4. Experimental setup to record data.

Fig. 5. Pupil signal processing procedure.
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Hossain et al., 2016b). It was mentioned in (Partala and Surakka, 2003)
that the neutral and emotional stimuli were separated at about 1 s
where peaks for all stimuli were reached at about 2–3 s. Finally, ne-
gative and positive stimuli were separated from the peak amplitudes. In
our case, we only used (positive) emotional stimuli such as real and
other smiles where the curves up to about 2.5 s are quite similar for real
smiles versus the rest, but differ strongly from 2.5 to 4.5 s.

The trends for GSR signals are different to pupillary responses, but
quite similar in timing when considering the real smiles’ stimuli, and
show the most divergence between real and not real smiles between 2
and 4.5 s. Two-Sample Kolmogorov-Smirnov (K-S) test (Marsaglia et al.,
2003) shows that the average GSR signal (p=0.3435) is not sig-
nificantly different (this is not significant, but the pattern of variations
between real and fake smiles have differences – between 2 and 6 s –
which is selected by our feature selection method) while LEPD (p <
0.001) and REPD (p < 0.001) signals differed significantly for real
smile physiological signals as compared to the other smile signals.

2.5. Feature selection

Feature selection is an important technique that reduces large
numbers of features by discarding unreliable, redundant and noisy
features, with the aim of achieving comparable or even better perfor-
mance Huang et al., 2007). Thus, we employed a feature selection
technique to find informative features relevant to our aim from these
signals. In this case, a correlation technique is applied to find in-
formative features that are relevant to the classification task. Canonical
Correlation Analysis with Neural Network (NCCA) (Hossain et al.,

2016c) is a training and learning process that searches for informative
features according to the classification classes. This feature selection
technique is applied here to search for minimally correlated features
considering the real versus acted classes. There are many highly cor-
related features in physiological signals while watching stimuli by the
same observers. We believe that the best source of differentiating in-
formation is in the minimally correlated features, and that there will be
meaningful information in those features because observers were
watching different types of videos, only some being real smiles. The
following joint learning rules (Eqs. (1)–((3)) were considered, where
i j w s f λ η η, , , , , , & 0 represent the pattern index, feature index, weight,
input features, output features, Lagrange multipliers and constant
learning rates respectively.

∑= =f w s w si i i
j

ij ij
(1)

= −+w ηs f λ fΔ ( )ij ij i i i1 (2)

= −λ η fΔ (1 )i i0
2 (3)

The feature selection process is explored in Fig. 7, the input features
sij are initially all the features across all participants and videos at the
sampling frequency of each sensor. We created two groups: Group 1
(signals while watching real smiles’ stimuli) and Group 2 (signals while
watching the other stimuli). The NCCA updates the values of
weights (wij) by minimising the correlation between two sets of vari-
ables, such as groups 1 and 2 (sij) Lai and Fyfe, 1999). The activation is
fed forward from input features (sij) to the corresponding output (fi)
through the respective weights (wij). Here, i=9*20 for Group 1 and

Fig. 6. Average trends of (a) LEPD, (b) REPD, and (c) GSR over observers.
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10*20 for Group 2 where there are 20 observers who watched 9 real
smiles and 10 other smiles. The values of j are 100 and 600 for GSR and
PR signals respectively where there are 100 and 600 features for a
single GSR and PR signal respectively, as we considered each time point
of physiological signals as a feature and the GSR sensor records at 10 Hz
and the eye gaze detector (PR) at 60 Hz. The values of the weights are
strengthened by updating the values of Lagrange multipliers (Lai and
Fyfe, 1999). In this case, initially λ=0.015, η=0.01, and η0= 0.5
were chosen based on common values from the literature, and then
weights and Lagrange multipliers were updated according to Eq. (2)
and Eq. (3). Then minimally correlated features are selected from
groups 1 and 2 according to Eq. (1)–((3) (Hossain et al., 2016c). Sup-
pose we want to select 50 features from a total of 100 GSR features, and
NCCA ranked the features according to the correlation between Group 1
and Group 2. Then the 50 features which are ranked with minimum
correlation compared to other features are selected and considered for
classifiers. In this case, the features of one observer are taken as the test
set and the rest of the observers’ features are used to train the classifier,
including only using the NCCA feature selection step on the training set
to avoid biasing the classifier by the effect of the test set. This process is
repeated for each observer, and the average classification accuracy is
reported.

3. Results and discussion

We employed four classifiers, each with two classes (real smiles and
not) to compute classification accuracies from the average classification
results of 20 observers. The classifiers were k-nearest neighbour (KNN),
support vector machine (SVM), neural network (NN), and a voting
ensemble. We used default performance parameter settings in this
MATLAB version as the Euclidean distance metric and 7 nearest
neighbours for KNN, sequential minimal optimization method and
Gaussian radial basis kernel function with a scaling factor of 5 for SVM,
scaled conjugate gradient training function with 10 hidden nodes for
NN, and employed an ensemble aggregating the decision of these three
classifiers respectively. The mean square error performance function is
used to compute classification accuracies from each classifier. The
analysis was performed with an Intel® Core™ i5-5200 U with 2.20 GHz,
8.00 GB RAM, Operating System 64-bit laptop using MATLAB R2015a.
The features (at each time point) of one observer were only used for
testing, while features from some or all of the other observers only were
used to train the classifier. The NCCA system was applied only on the
training set to select features, in order to avoid any effect of biasing on
the test set. This process was repeated for each observer and thus, a
leave-one-observer-out procedure was performed to compute the clas-
sification accuracies. The average classification accuracies over ob-
servers for GSR signals are explored in Table 2.

As we considered each time point as a feature for each physiological
signal, thus there were a total of 100 features for each GSR signal;

10 sec (video length) x 10 samples per sec (sampling frequency). It is
clear from Table 2 that the ensemble classifier shows higher accuracies
compared to other classifiers, with the highest accuracy of 96.6%
(±3.3) for 100 (all) features. It is worth mentioning that the pattern of
differences on GSR signals could allow this discrimination, even though
the overall average values of the GSR signals do not differ significantly as
we showed in Section 2.4. In the case of each PR signal, there were 600
features (10 sec (video length) x 60 samples per sec (sampling fre-
quency). The average classification accuracies over observers for PR
features are shown in Table 3.

It can be seen from Table 3 that the ensemble classifier shows higher
accuracies for PR features also. The LEPD shows the highest accuracy of
97.8% (± 0.6) for 450 selected features where the REPD shows the
highest accuracy of 97.3% (± 0.8) for 550 selected features respec-
tively. It can also be seen from Tables 2 and 3 that the classification
accuracies do not change much for some ranges of selected features,
such as accuracies varied only from 95.9% to 96.6% for selected fea-
tures of 90 to 100 in case of GSR, and from 97.5% to 97.8% for selected
features of 350–600 in case of LEPD, and from 96.4% to 97.3% for
selected features of 400 to 600 in case of REPD, respectively. This in-
dicates that we can represent whole signals by a smaller number of
features, without much decrease of accuracy, whenever required.

We also checked the effect of varying the number of observers used
in training, on classification accuracies. As the number of training ob-
servers increase, classification accuracy increases from lower number of
observers as shown in Fig. 8. It is also noticeable from Fig. 8 that the
accuracy does not increase much after a certain point, here 9 observers
is that point. This outcome is reported from 450 selected LEPD features
and the ensemble classifier.

We also verified the number of training videos as illustrated in
Fig. 9. It can be seen from Fig. 9 that accuracies increase when the
number of training videos are increases from 1 to 9. After that point, the
classifiers’ accuracies do not change much. These results are reported
from the 450 LEPD features and the ensemble classifier.

Fig. 7. Feature selection using NCCA system.

Table 2
Average classification accuracies over observers for GSR features.

No. of Features KNN SVM NN Ensemble
Avg. Std. Avg. Std. Avg. Std. Avg. Std.

10 78.1 10.7 74.0 13.8 75.6 18.9 78.8 12.1
20 81.9 07.1 75.8 14.0 79.3 21.9 83.8 05.2
30 79.6 11.2 79.9 14.4 75.1 21.3 83.8 09.5
40 80.5 09.8 83.0 15.8 85.0 18.4 86.9 08.6
50 80.1 10.3 87.5 13.2 90.8 12.0 91.6 05.9
60 85.1 06.1 93.0 06.6 94.1 07.3 94.3 04.5
70 83.3 09.1 94.1 07.6 94.3 09.8 94.3 05.3
80 86.5 05.3 94.0 08.3 93.0 11.9 94.0 05.3
90 85.6 05.3 95.6 05.6 95.7 02.4 95.9 03.9
100 85.1 06.9 96.1 05.2 96.5 03.3 96.6 03.3
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Observers’ self-reported judgements were also calculated from five
point Likert scale results. To compute the self-report scores, the per-
centage of stimuli correctly selected by individual observers was cal-
culated. The average score over 20 observers was 52.7% (on average).
On the other hand, Frank et al. (1993) found that observers were 56.0%
correct at discriminating genuine from fake smiles in his experiment.
We also tried to find whether accuracies improve if we consider the “No
Smile” choice as not being smiles in that they were not real smiles
(some comments by participants made it clear that they only chose real
when they were sure it was smile), leading to an accuracy of 58.9%. We
also considered voting (more than 50% of the observers characterise a
stimulus as real or not) from all observers. This does improve the re-
sults, the observers’ judgments as a group is 68.4% accurate. Below, and
in our conclusion, we suggest why this low outcome makes sense as
compared to the high results for physiological signals from the same
subjects. We next discuss evidence from the literature which supports
both the low and high results we have achieved.

We also tried to compare our outcomes with others. But most of the
work in the literature on smile genuineness has been performed either
by surveys and hence just verbal responses, or just as computer vision
approaches for analysing image/video based smile characteristics and
hence have no verbal responses. The survey results are similar to ours,
ranging from 56% to 69% (Hoque and Picard, 2011; Frank et al., 1993).

On the other hand, this paper is based on experimental observers’
physiological responses while watching emotion expressions in videos.
This difference makes it difficult to compare the computer vision based

analyses of image/video results in the literature directly with our out-
comes. Valstar et al. (2007) discriminated fake from genuine smiles by
analysing displayer's video data from face, head and body actions, and
found classification accuracy of 94%. With the use of morphological
characteristics with the ratio of duration to amplitude, then a linear
discriminant function distinguished between displayer's genuine and
fake smiles with the classification accuracy of 93% (Cohn and
Schmidt, 2004). Gan et al. (2015) reported their highest classification
accuracy was 91.7% at discriminating displayer's genuine from fake
smiles using a deep Boltzmann machine. Dibeklioglu et al. (2015)
proposed an automatic system and described an informative set of facial
features of smile videos to distinguish displayer's genuine from fake
smiles with their highest classification rate of 92.9%. On the other
hand, we have found 96.6%, 97.3%, and 97.8% accuracies by analysing
observers’ GSR, right eye, and left eye pupillary responses, respectively.
Numerically, our results are similar and slightly better on the randomly
chosen subsets from the databases. It is important to note that computer
vision techniques can use a huge number of facial expressions to re-
cognise smiles where they are using smiling faces as a primary source
(Valstar et al., 2007; Dibeklioglu et al., 2015). In our case, we use ob-
servers’ physiological signals while watching smile videos, thus this is
impossibly long in a single experiment to consider all of the videos with
humans due to boredom. We have shown by statistical significance
calculations that our results are unlikely to be due to chance, and have
also shown that we have sufficient observers (as Fig. 8 shows) and
sufficient videos (as Fig. 9 shows). This result makes intuitive sense: the

Table 3
Average classification accuracies over observers for PR features.

No. of Features LEPD REPD
KNN SVM NN Ensemble KNN SVM NN Ensemble
Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std. Avg. Std.

50 74.3 08.0 79.8 08.2 77.4 19.1 80.5 07.1 80.3 07.9 81.9 08.5 82.9 11.2 83.0 08.0
100 79.5 07.4 81.3 06.3 82.1 18.4 84.9 06.5 82.5 04.4 88.9 05.1 87.4 02.5 89.1 05.1
150 84.8 05.3 94.3 02.6 94.3 04.1 94.9 02.4 88.0 03.5 94.3 01.4 93.8 01.4 94.4 01.4
200 88.3 04.4 96.6 02.0 96.4 01.5 96.9 02.0 89.0 03.8 95.8 01.2 95.4 00.9 95.9 01.3
250 88.6 04.1 95.1 01.6 95.9 06.2 96.5 02.1 89.3 02.7 95.4 00.9 95.6 01.4 95.9 01.2
300 88.8 04.8 95.8 01.4 96.6 01.0 97.0 01.1 91.3 02.6 95.3 00.8 95.5 01.0 95.8 01.2
350 88.3 03.6 97.1 01.1 97.1 06.0 97.5 01.1 92.3 01.8 95.9 01.2 95.1 00.6 96.0 01.3
400 90.0 02.9 96.8 00.8 95.6 01.5 97.4 01.1 92.6 01.5 96.8 01.2 95.5 01.0 96.9 01.1
450 91.6 02.6 96.3 01.2 96.4 00.6 97.8 00.6 92.6 01.5 96.6 01.2 95.3 00.8 96.8 01.2
500 91.5 03.6 97.4 01.2 97.4 00.6 97.6 01.0 92.9 01.5 96.3 01.3 95.4 01.2 96.4 01.3
550 91.9 01.1 97.4 00.6 97.3 00.8 97.6 00.6 92.9 01.2 97.1 00.8 95.6 01.6 97.3 00.8
600 92.1 00.9 97.3 01.2 97.4 00.6 97.5 01.2 93.1 01.4 97.1 00.8 95.3 00.8 97.3 00.8

Fig. 8. Variation of accuracies with the increasing number of training observer.
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computational approaches try to use all the information available in the
image / video, which is the same information available to the human
observer. A slightly better performance by the human could be due to
the greater amount of training by the human observer from their life
prior to the experiment. It is also difficult to compare our results with
the emotion recognition work such as Hoque and Picard (2011), be-
cause they use different stimuli and emotion classes. We note that those
emotion classes are not directly related to detecting genuine smiles, as
their fake smiles can include more obvious fake smiles, as we can de-
duce from their definitions.

We believe that a computer vision algorithm should be able to
perform the same task with the same level of accuracy as our human
observers. The nearest result for a similar task in the literature is 4%
less accurate (Valstar et al., 2007). Such computer vision algorithms
require significant amounts of detailed knowledge and hard work to
encode the characteristics of real smiles (and this is not as yet fully
understood in the Psychology literature), or require large numbers of
real smiles for training a deep learning neural network or similar non-
parametric classifier to improve their results. There are many smile
images on the web, but which of them are genuine? There are only
small numbers of smiles in databases where we can know with con-
fidence that they are real as they were elicited as such. Arguably, even
expecting a smile to be elicited could lead to a subject trying to help the
experimenter and smiling partly consciously or at least self-consciously.

Eventually we would expect evidence such as our work to be used to
improve computer vision algorithms for this task. The key benefit from
our technique is that the learning of the really hard tasks (detecting
genuine smiles in this case) has already been done by the human being
in their normal life. The physiological signal collection and analysis is
much more straightforward than designing such a computer vision al-
gorithm, and our signal collection and analysis can be applied to other
emotions (Chen et al., 2017), while a completely new computer vision
algorithm would need to be developed for each emotion.

Human verbal responses are easy to quantify and collect during
experiments, and reflect conscious human behaviour in a fashion which
superficially seems to be objective. It is a one-dimensional approach to
understanding human behaviour that fails to address cognitive and
biological processes and does not account for the unconscious mind's
thoughts, feelings, and desires (Mills, 2000). A further limitation of this
process is that facial expressions can be intentionally controlled, and
observers may misrepresent their reaction to the viewed emotional
faces (Soleymani et al., 2012b; Hess and Kleck, 1994). So in areas which
are emotionally significant for human beings, we should not expect

verbal responses to be objective and reliable (Horikawa et al., 2013;
Plested et al., 2017). In some settings, explicit verbal responses are not
possible to collect (Horikawa et al., 2013).

On the other hand, physiological responses are automatic reactions
that trigger physical responses to stimulus, and have the advantage of
immediately being affected by observing facial changes that cannot be
faked voluntarily or assessed visually (Kim and Andre, 2008; Soleymani
et al., 2012b; Soleymani et al., 2012a). Most of us are familiar with
these automatic and instinctive physiological responses we experience
every day, but we typically remain unaware about their details, such as
how galvanic skin responses and pupillary responses change due to
stimuli and under pressure (Teatero and Penney, 2015). There is also
evidence that observers’ physiological responses can form or evaluate
another's mental state (Shah et al., 2017), perhaps via subjective feel-
ings which allows us to judge others’ facial expression. An important
benefit of physiological measurement is that it is not easy to control
voluntarily and provides spontaneous and non-conscious outcomes.
Thus, it is therefore plausible that observers’ sub-conscious ‘choices’
(physiological responses) can provide higher accuracy compared to
their conscious choices (verbal responses). Overall, the results of the
experiment shows that we can classify real and other smiles via ob-
servers’ innate and non-conscious physiological responses that are
controlled by the autonomic nervous system.

We note that many physiology-based works assume a coherent re-
lationship between explicit (conscious) user responses and sub-con-
scious physiological signals. E.g., (Soleymani et al., 2009; Soleymani
et al., 2012a) employ user ratings as the ground truth, and study the
effectiveness of physiological responses towards predicting the user
ratings. Our works show that there appears to be substantial similarity
between conscious and sub-conscious responses in the area of emotion
recognition which leads to the observed difference in survey and phy-
siology-based classifications. The only similar work we can find is in
musical emotion recognition where the ground truth does not come
from an individual's own reactions, where physiological classification
gives results in the range of 87–95% [(Kim and Andre, 2008),
Lin et al. (2009)]. In comparing observers’ recognition of depression
level, a similar result to ours was obtained, with physiological signal
classification being 79% as compared to user responses being 47%
(Plested et al., 2017).

4. Conclusion

In this paper, two types of physiological signals were investigated,

Fig. 9. Variation of accuracies with the increasing number of training videos.
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while watching emotion containing video stimuli, along with recording
the observer's judgements via a Likert scale, to discriminate genuine
from acted smiles. It was a challenging task, because the recorded
physiological signals were highly noisy. Different noise removal tech-
niques with an advanced feature selection method were applied and the
highest classification accuracy was found to be 97.8% by analysing 450
features of LEPD. The observers were only 52.7% (on average) to 68.4%
accurate (by voting) according to their self-report. These results are in
the normal range reported in the literature over multiple studies for
determining real smiles from surveys. The result of 52.7% accuracy in
conscious (self-report) discrimination of smile genuineness seems too
low to be plausible given how important smiles are for humans, though
perhaps humans are only accurate in groups, with our 20 subjects being
about 15% better as a group. A result of 97.8% from pupillary response
suggests that at non-conscious levels we are very good at detecting
genuine smiles, perhaps reflecting the fact that this identification can
feed into our emotional responses to others, and perhaps even that
there is a benefit to a relatively low level of conscious identification of
genuine smiles – it may be important in social interactions to be able to
accept smiles or other expressions at ‘face value’, consciously. Our fu-
ture work will consider extending this work to single images, more
complex videos, group expressions in still and video images, to other
facial expressions, and the use of virtual or synthesised faces
(Asthana et al., 2009).
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